|
4 minutes reading

Life 3.0 may arrive during the coming century

Life 3.0 may arrive during the coming century Life 3.0 may arrive during the coming century
Source : Adamon von Eden via Pinterest
Life 3.0
From a book
Life 3.0
Font size
A
12 24 17
A
#Artificial intelligence (AI)

Such bacteria are an example of what I'll call "Life 1.0": life where both the hardware and software are evolved rather than designed. You and I, on the other hand, are examples of "Life 2.0": life whose hardware is evolved, but whose software is largely designed. By your software, I mean all the algorithms and knowledge that you use to process the information from your senses and decide what to do—everything from the ability to recognize your friends when you see them to your ability to walk, read, write, calculate, sing and tell jokes. You weren't able to perform any of those tasks when you were born, so all this software got programmed into your brain later through the process we call learning. Whereas your childhood curriculum is largely designed by your family and teachers, who decide what you should learn, you gradually gain more power to design your own software. Perhaps your school allows you to select a foreign language: Do you want to install a software module into your brain that enables you to speak French, or one that enables you to speak Spanish? Do you want to learn to play tennis or chess? Do you want to study to become a chef, a lawyer or a pharmacist? Do you want to learn more about artificial intelligence (AI) and the future of life by reading a book about it?

This ability of Life 2.0 to design its software enables it to be much smarter than Life 1.0. High intelligence requires both lots of hardware (made of atoms) and lots of software (made of bits). The fact that most of our human hardware is added after birth (through growth) is useful, since our ultimate size isn't limited by the width of our mom's birth canal. In the same way, the fact that most of our human software is added after birth (through learning) is useful, since our ultimate intelligence isn't limited by how much information can be transmitted to us at conception via our DNA, 1.0-style. I weigh about twenty-five times more than when I was born, and the synaptic connections that link the neurons in my brain can store about a hundred thousand times more information than the DNA that I was born with. Your synapses store all your knowledge and skills as roughly 100 terabytes' worth of information, while your DNA stores merely about a gigabyte, barely enough to store a single movie download. So it's physically impossible for an infant to be born speaking perfect English and ready to ace her college entrance exams: there's no way the information could have been preloaded into her brain, since the main information module she got from her parents (her DNA) lacks sufficient information-storage capacity. The ability to design its software enables Life 2.0 to be not only smarter than Life 1.0, but also more flexible. If the environment changes, 1.0 can only adapt by slowly evolving over many generations. Life 2.0, on the other hand, can adapt almost instantly, via a software update. For example, bacteria frequently encountering antibiotics may evolve drug resistance over many generations, but an individual bacterium won't change its behavior at all; in contrast, a girl learning that she has a peanut allergy will immediately change her behavior to start avoiding peanuts. This flexibility gives Life 2.0 an even greater edge at the population level: even though the information in our human DNA hasn't evolved dramatically over the past fifty thousand years, the information collectively stored in our brains, books and computers has exploded. By installing a software module enabling us to communicate through sophisticated spoken language, we ensured that the most useful information stored in one person's brain could get copied to other brains, potentially surviving even after the original brain died. By installing a software module enabling us to read and write, we became able to store and share vastly more information than people could memorize. By developing brain software capable of producing technology (i.e., by studying science and engineering), we enabled much of the world's information to be accessed by many of the world's humans with just a few clicks. This flexibility has enabled Life 2.0 to dominate Earth. Freed from its genetic shackles, humanity's combined knowledge has kept growing at an accelerating pace as each breakthrough enabled the next: language, writing, the printing press, modern science, computers, the internet, etc. (...)

Yet despite the most powerful technologies we have today, all life forms we know of remain fundamentally limited by their biological hardware. None can live for a million years, memorize all of Wikipedia, understand all known science or enjoy spaceflight without a spacecraft. None can transform our largely lifeless cosmos into a diverse biosphere that will flourish for billions or trillions of years, enabling our Universe to finally fulfill its potential and wake up fully. All this requires life to undergo a final upgrade, to Life 3.0, which can design not only its software but also its hardware. In other words, Life 3.0 is the master of its own destiny, finally fully free from its evolutionary shackles. The boundaries between the three stages of life are slightly fuzzy. If bacteria are Life 1.0 and humans are Life 2.0, then you might classify mice as 1.1: they can learn many things, but not enough to develop language or invent the internet. Moreover, because they lack language, what they learn gets largely lost when they die, not passed on to the next generation. Similarly, you might argue that today's humans should count as Life 2.1: we can perform minor hardware upgrades such as implanting artificial teeth, knees and pacemakers, but nothing as dramatic as getting ten times taller or acquiring a thousand times bigger brain. In summary, we can divide the development of life into three stages, distinguished by life's ability to design itself:

• Life 1.0 (biological stage): evolves its hardware and software • Life 2.0 (cultural stage): evolves its hardware, designs much of its software • Life 3.0 (technological stage): designs its hardware and software

After 13.8 billion years of cosmic evolution, development has accelerated dramatically here on Earth: Life 1.0 arrived about 4 billion years ago, Life 2.0 (we humans) arrived about a hundred millennia ago, and many AI researchers think that Life 3.0 may arrive during the coming century, perhaps even during our lifetime, spawned by progress in AI. What will happen, and what will this mean for us? That's the topic of this book.

Example

+ 15 points
Do you know an example, a fact, an evidence a personal experience which would support the theory ?


Please enter a value.

Interpretation

+ 15 points
Do you believe this entry can have a different reading, or that you can bring clarification to the text of the author ?


Please enter a value.

Comment

+ 5 points
Would you like to share an opinion on this
article ?


Please enter a value.
Similar articles
Category:
Technology & Science
The best way to predict your future is to create it
The best way to predict your future is to create it
GIF
Emil Lindén via Giphy

We are still the masters of our fate. Rational thinking, even assisted by any conceivable electronic computors, cannot predict the future. All it can do is to map out the probability space as it appears at the present and which will be different tomorrow when one of the infinity of possible states will have materialized. Technological and social inventions are broadening this probability space all the time; it is now incomparably larger than it was before the industrial revolution—for good or for evil.

The future cannot be predicted, but futures can be invented. 

It was man’s ability to invent which has made human society what it is. The mental processes of inventions are still mysterious. They are rational but not logical, that is to say, not deductive.

| Approved
Category:
Technology & Science
[intelligence explosion] The first ultraintelligent machine is the last invention that man need ever make [intelligence explosion] The first ultraintelligent machine is the last invention that man need ever make
Davison Carvalho via Artstation

Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine could design even better machines; there would then unquestionably be an ‘intelligence explosion’, and the intelligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the machine is docile enough to tell us how to keep it under control.

| Approved
Category:
Technology & Science
Digital distraction keeps the mind occupied but does little to nurture it Digital distraction keeps the mind occupied but does little to nurture it
Author unknow via Pinterest

Social media has given everyone a virtual megaphone to broadcast every thought, along with the means to filter out any contrary view [...] The result is a creeping sense of isolation and emptiness, which leads people to swipe, tap, and click all the more. Digital distraction keeps the mind occupied but does little to nurture it, much less cultivate depth of feeling, which requires the resonance of another’s voice within our very bones and psyches. 

| Approved
Category:
Technology & Science
1 minute reading

Moravec's paradox is the observation by artificial intelligence and robotics researchers that, contrary to traditional assumptions, reasoning (which is high-level in humans) requires very little ...

| Approved
Category:
Technology & Science
Those who bring change are those who are able to bring a fresh perspective.
Those who bring change are those who are able to bring a fresh perspective.
GIF
Clayton Shonkwiler via Giphy

Almost always the men who achieve these fundamental inventions of a new paradigm have been either very young or very new to the field whose paradigm they change. And perhaps that point need not have been made explicit, for obviously these are the men who, being little committed by prior practice to the traditional rules of normal science, are particularly likely to see that those rules no longer define a playable game and to conceive another set that can replace them.

| Approved
Row:Column:
×
Row:Column:
×
Row:Column:
×